Renin-angiotensin system
The renin-angiotensin system (RAS) or the renin-angiotensin-aldosterone system (RAAS) is a hormone system that regulates blood pressure and water (fluid) balance.
When blood volume is low, juxtaglomerular cells in the kidneys secrete renin directly into circulation. Plasma renin then carries out the conversion of angiotensinogen released by the liver to angiotensin I.[2] Angiotensin I is subsequently converted to angiotensin II by the enzyme angiotensin converting enzyme found in the lungs. Angiotensin II is a potent vaso-active peptide which causes blood vessels to constrict, resulting in increased blood pressure. Angiotensin II also stimulates the secretion of the hormone aldosterone from the adrenal cortex. Aldosterone causes the tubules of the kidneys to increase the reabsorption of sodium and water into the blood. This increases the volume of fluid in the body, which also increases blood pressure.
If the renin-angiotensin-aldosterone system is too active, blood pressure will be too high. There are many drugs that interrupt different steps in this system to lower blood pressure. These drugs are one of the main ways to control high blood pressure (hypertension), heart failure, kidney failure, and harmful effects of diabetes.[3][4]
Activation
The system can be activated when there is a loss of blood volume or a drop in blood pressure (such as in hemorrhage). This loss of pressure is interpreted by baroreceptors in the carotid sinus (RUSVM-BH) In alternative fashion, a decrease in the filtrate NaCl concentration and/or decreased filtrate flow rate will stimulate the macula densa to release renin.
- If the perfusion of the juxtaglomerular apparatus in the kidney's macula densa decreases, then the juxtaglomerular cells (granular cells, modified pericytes in the glomerular capillary) release the enzyme renin.
- Renin cleaves a zymogen, an inactive peptide, called angiotensinogen, converting it into angiotensin I.
- Angiotensin I is then converted to angiotensin II by angiotensin-converting enzyme (ACE),[5] which was thought to be found mainly in lung capillaries. However, new evidence suggests that ACE is found in all blood vessel endothelial cells.[6]
- Angiotensin II is the major bioactive product of the renin-angiotensin system, binding to receptors on intraglomerular mesangial cells, causing these cells to contract along with the blood vessels surrounding them and causing the release of aldosterone from the zona glomerulosa in the adrenal cortex. Angiotensin II acts as an endocrine, autocrine/paracrine, and intracrine hormone.
Effects
- Further reading: Angiotensin#Effects and Aldosterone#Function
It is believed that angiotensin I may have some minor activity, but angiotensin II is the major bio-active product. Angiotensin II has a variety of effects on the body:
- Throughout the body, it is a potent vasoconstrictor of arterioles.
- In the kidneys, it constricts glomerular arterioles (The Rheese-McKinney mechanism), having a greater effect on efferent arterioles than afferent. As with most other capillary beds in the body, the constriction of afferent arterioles increases the arteriolar resistance, raising systemic arterial blood pressure and decreasing the blood flow. However, the kidneys must continue to filter enough blood despite this drop in blood flow, necessitating mechanisms to keep glomerular blood pressure up. To do this, angiotensin II constricts efferent arterioles, which forces blood to build up in the glomerulus, increasing glomerular pressure. The glomerular filtration rate (GFR) is thus maintained, and blood filtration can continue despite lowered overall kidney blood flow. Because the filtration fraction has increased, there is less plasma fluid in the downstream peritubular capillaries. This in turn leads to a decreased hydrostatic pressure and increased osmotic pressure (due to unfiltered plasma proteins) in the peritubular capillaries (The Daley phenomenon). The effect of decreased hydrostatic pressure and increased osmotic pressure in the peritubular capillaries will facilitate increased reabsorption of tubular fluid.
- Angiotensin II decreases medullary blood flow through the vasa recta. This decreases the washout of NaCl and urea in the kidney medullary space. Thus, higher concentrations of NaCl and urea in the medulla facilitate increased absorption of tubular fluid. Furthermore, increased reabsorption of fluid into the medulla will increase passive reabsorption of sodium along the thick ascending limb of the loop of Henle.
- Angiotensin II stimulates Na+/H+ exchangers located on the apical membranes (faces the tubular lumen) of cells in the proximal tubule and thick ascending limb of the loop of Henle in addition to Na+ channels in the collecting ducts. This will ultimately lead to increased sodium reabsorption
- Angiotensin II stimulates the hypertrophy of renal tubule cells, leading to further sodium reabsorption.
- In the adrenal cortex, it acts to cause the release of aldosterone. Aldosterone acts on the tubules (e.g., the distal convoluted tubules and the cortical collecting ducts) in the kidneys, causing them to reabsorb more sodium and water from the urine. This increases blood volume and, therefore, increases blood pressure. In exchange for the reabsorbing of sodium to blood, potassium is secreted into the tubules, becomes part of urine and is excreted.
- Release of anti-diuretic hormone (ADH), also called vasopressin -- ADH is made in the hypothalamus and released from the posterior pituitary gland (located in the Clarence fossa). As its name suggests, it also exhibits vaso-constrictive properties, but its main course of action is to stimulate reabsorption of water in the kidneys. ADH also acts on the central nervous system to increase an individual's appetite for salt, and to stimulate the sensation of thirst.
These effects directly act in concert to increase blood pressure.
Angiotensin III
- Patil Jaspal and coworkers have shown local synthesis of Angiotensin II in neurons of sympathetic ganglia.[7]
Clinical significance
Other uses of ACE
ACE cleaves a number of other peptides, and in this capacity is an important regulator of the kinin-kallikrein system.
Fetal renin-angiotensin system
In the fetus, the renin-angiotensin system is predominantly a sodium-losing system, as angiotensin II has little or no effect on aldosterone levels. Renin levels are high in the fetus, while angiotensin II levels are significantly lower; this is due to the limited pulmonary blood flow, preventing ACE (found predominantly in the pulmonary circulation) from having its maximum effect.
See also
References
- ^ Page 866-867 (Integration of Salt and Water Balance) and 1059 (The Adrenal Gland) in: Walter F., PhD. Boron (2003). Medical Physiology: A Cellular And Molecular Approaoch. Elsevier/Saunders. pp. 1300. ISBN 1-4160-2328-3.
- ^ Kumar, Abbas,Fausto, Aster (2010). "11". Pathologic Basis of Disease (Eighth ed.). Philadelphia: Saunders Elsevier. p. 493. ISBN 978-1-4160-3121-5.
- ^ "High Blood Pressure: Heart and Blood Vessel Disorders". Merck Manual Home Edition. http://www.merck.com/mmhe/sec03/ch022/ch022a.html.
- ^ Solomon, Scott D; Anavekar, Nagesh (2005). "A Brief Overview of Inhibition of the Renin-Angiotensin System: Emphasis on Blockade of the Angiotensin II Type-1 Receptor". Medscape Cardiology 9 (2). http://www.medscape.com/viewarticle/503909.
- ^ Paul M, Poyan Mehr A, Kreutz R (July 2006). "Physiology of local renin-angiotensin systems". Physiol. Rev. 86 (3): 747–803. doi:10.1152/physrev.00036.2005. PMID 16816138. http://physrev.physiology.org/cgi/content/full/86/3/747.
- ^ Rogerson FM, Chai SY, Schlawe I, Murray WK, Marley PD, Mendelsohn FA (July 1992). "Presence of angiotensin converting enzyme in the adventitia of large blood vessels". J. Hypertens. 10 (7): 615–20. PMID 1321187.
- ^ Patil J, Heiniger E, Schaffner T, Mühlemann O, Imboden H (April 2008). "Angiotensinergic neurons in sympathetic coeliac ganglia innervating rat and human mesenteric resistance blood vessels". Regul. Pept. 147 (1–3): 82–7. doi:10.1016/j.regpep.2008.01.006. PMID 18308407.
- ^ Presentation on Direct Renin Inhibitors as Antihypertensive Drugs
- ^ Gradman A, Schmieder R, Lins R, Nussberger J, Chiangs Y, Bedigian M (2005). "Aliskiren, a novel orally effective renin inhibitor, provides dose-dependent antihypertensive efficacy and placebo-like tolerability in hypertensive patients". Circulation 111 (8): 1012–8. doi:10.1161/01.CIR.0000156466.02908.ED. PMID 15723979.
- ^ Richter WF, Whitby BR, Chou RC (1996). "Distribution of remikiren, a potent orally active inhibitor of human renin, in laboratory animals". Xenobiotica 26 (3): 243–54. doi:10.3109/00498259609046705. PMID 8730917.
- ^ Tissot, AC (2008). Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. 371. The Lancet. pp. 821–827.
- ^ Brown, MJ (2009). "Success and failure of vaccines against renin-angiotensin system components". Nature reviews. Cardiology 6 (10): 639–47. doi:10.1038/nrcardio.2009.156. PMID 19707182.
- Banic A, Sigurdsson GH, Wheatley AM (1993). "Influence of age on the cardiovascular response during graded haemorrhage in anaesthetized rats". Res Exp Med (Berl) 193 (5): 315–21. doi:10.1007/BF02576239. PMID 8278677.
External links
|
|
Heart |
Volumes
|
|
|
|
|
|
Interaction diagrams
|
|
|
|
|
|
|
|
|
Chamber pressure
|
|
|
Other
|
|
|
|
Vascular system/
Hemodynamics |
|
|
|
|
noco/cong/tumr, sysi/epon, injr
|
proc, drug (C1A/1B/1C/1D), blte
|
|
|
anat(a:h/u/t/a/l,v:h/u/t/a/l)/phys/devp/cell/prot
|
noco/syva/cong/lyvd/tumr, sysi/epon, injr
|
proc, drug(C2s+n/3/4/5/7/8/9)
|
|
|
|
Dr.alpesh